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Infectious diseases are a leading cause of death 
worldwide [1,2]. The Mid-20th century witnessed most of 
the antimicrobial discoveries but recently there is dramatic 
shortage of new classes of antimicrobial agents due to failure to 
build a sustainable antimicrobial discovery platform [1-4]. For 
example, antibiotics comprise ˂  1.5% of the compounds under 
investigation at the major pharmaceutical and biotechnology 
companies [1,5]. Recently, the pipeline for new antimicrobials 
has become extremely dry as pharmaceutical companies 
largely withdrew in the late 1990s due to: antimicrobial 
therapy being less proϐitable than medications used to treat 
cancer and other chronic medical conditions; difϐiculty in 
discovering novel and efϐicient antimicrobials; complexity 
of conducting controlled clinical trials; and emergence of 
multidrug resistant organisms [1,6-13]. 

Dozens of viruses constantly infect human beings and 
represent sustained health and economic burden [14]. 
Between 1975 and 2015, > 50 new viruses that cause human 
disease have been described [15]. The emergence of high 
morbidity viruses such as: severe acute respiratory syndrome 
coronavirus (SARS-CoV) in 2004, the Middle East respiratory 
syndrome (MERS-CoV) in 2012, and human metapneumovirus 
in 2001 represent global threats and highlight the importance 
of international collaboration on respiratory virus research 
[14,16]. The development of antiviral drugs is slow, 
complicated and full of hurdles [15]. Between 1963 and 2016, 
approximately 90 antiviral drugs have been approved for 
the treatment of several viruses including herpersviruses, 
hepatitis B and C viruses, and human immunodeϐiciency virus 
[15,17]. Drug resistant viral mutants which are frequently 
encountered in RNA viruses represent a major problem in 
antiviral therapy [18]. There is urgent need to control viral 
infections that cause human diseases particularly those caused 
by drug-resistant viruses [14]. Broad-spectrum antiviral 
agents can cover multiple viruses and reduce the likelihood of 

developing drug resistance [14,19]. Unfortunately, no speciϐic 
antiviral drugs or vaccines are available for Coronaviridae in 
general [17,19]. 

Coronavirus disease 2019 (COVID-19) pandemic has 
already caused massive life losses all over the globe and 
has practically disturbed almost every single aspect of 
life and its repercussions have adversely affected world 
economy [20-22]. Clinically, patients with COVID-19 present 
predominantly with fever and respiratory manifestations 
but the illness may be complicated by severe pneumonia, 
acute respiratory distress syndrome (ARDS), and respiratory 
failure that may be followed by multiorgan failure and death 
[20,21,23-26]. The pathogenesis of COVID-19 involves: 
immune-mediated mechanisms; direct cytotoxicity; antibody-
dependent enhancement; viral sepsis; severe pneumonia, 
ARDS, respiratory failure followed by multiorgan failure; and 
cytokine storm with signiϐicant elevation of proinϐlammatory 
cytokines [27-30]. SARS-CoV-2 infects lung alveolar epithelial 
cells by receptor-mediated endocytosis in association with 
angiotensin converting enzyme 2 (ACE-2) [31,32]. Myocardial 
injury associated with COVID-19 can be explained by: direct 
infection through ACE-2, imbalance between myocardial 
oxygen supply and demand, and the presence of an abnormal 
immune response [31-33]. In patients with COVID-19, high 
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levels of neutrophil extracellular traps (NETs) have been 
documented and the release of NETs (NETosis) may be 
responsible for many of the serious complications associated 
with COVID-19 including: ARDS, respiratory failure, cytokine 
storm, thromboembolic complications, and acute organ 
dysfunction that leads to multiorgan failure [34-37]. Leukemia 
inhibitory factor, which belongs to the interleukin-6 family of 
cytokines, could protect the lungs from further injury during 
pneumonia and may enhance endogenous cardiomyocyte 
regeneration following myocardial infarction and hence it 
may be useful in patients with COVID-19 pneumonia with 
cardiac decompensation [38,39]. In the absence of speciϐic 
antiviral treatment and vaccines, the available therapeutic 
interventions are: symptomatic measures and supportive 
care including: oxygen administration, non-invasive 
ventilation, and mechanical ventilation; drug repurposing 
using mainly antiviral agents, anti-inϐlammatory drugs, and 
monoclonal antibodies; and other lines of treatment including 
use of convalescent plasma, removal of cytokines, Chinese 
traditional medicines, and mesenchymal stem cell (MSC) 
therapies [21,24,26,40,41]. 

MSCs have antimicrobial, anti-inϐlammatory and 
immunomodulatory properties and they have been used 
in the treatment of several infectious diseases and their 
complications such as ARDS both in animal models and in 
human clinical trials [42-49]. MSCs derived from umbilical 
cord blood (UCB) and adipose tissue are more advantageous 
than other sources of MSCs [50-55]. MSCs exhibit the following 
antimicrobial properties: detection and elimination of the 
invading pathogen by enhancing bacterial clearance; activation 
of the host immune response by induction of proinϐlammatory 
gradients or responses; and secretion of antimicrobial 
proteins [43,53,56]. MSCs have the following effects on the 
lungs: immunomodulatory effects; protection of alveolar 
epithelial cells; restoration of pulmonary microenvironment; 
prevention of pulmonary ϐibrosis; reversal of pulmonary 
dysfunction and control of COVID-19 pneumonia; prevention 
of cytokine release; and promotion of endogenous repair. Also, 
after intravenous (IV) administration, a signiϐicant proportion 
of MSCs accumulate in the lungs so a limitation can become 
an advantage in case of acute lung injury (ALI) or ARDS 
[54,57]. Additionally, MSCs have been found to modulate 
the functions of the following immune cells: T-cells, B-cells, 
natural killer cells (NKCs), dendritic cells (DCs), cytotoxic 
T-cells, macrophages, and neutrophils [58].

MSCs produce biologically active substances, secretomes, 
that are made of extracellular vesicles including exosomes, 
microvesicles and apoptotic bodies; soluble proteins such 
as cytokines, chemokines, and growth factors; lipids; 
nucleic acids; and conditioned media [59-64]. Advantages 
of secretomes include: ability to bypass the side effects 
of MSC-based therapy thus they are generally safer than 
MSCs; immediate availability for emergency use in the 
treatment of acute conditions; massive production from 

commercially available cell lines; the technical advantage of 
being manipulated and stored more easily than MSCs; and 
the lower costs compared to other therapeutic interventions 
such as ticilizumab [59-61]. Therapeutic effects of MSC-
secretomes include: antimicrobial effects; suppression of 
cytokine production in ALI; enhancement of wound healing 
and tissue repair; anti-oxidant effects; immunomodulatory 
and immunosuppressive effects; regulation of angiogenesis 
and suppression of collagen deposition in lung tissues; as 
well as antitumor effects and neuroprotective effects [59-64]. 
After IV injection of MSC-secretome, the secretome remains 
highly stable in the peripheral circulation and it spreads 
into lung tissues to provide: immunomodulation, resolution 
of inϐlammation, restoration of capillary barrier function, 
and enhancement of bacterial clearance [59]. Recently it has 
been shown that MSCs and their secretomes have promising 
results in the treatment of sepsis, viral pneumonia, ALI, and 
ARDS thus making the secretory products of MSCs superior 
to pure cellular therapies [56,57,62]. MSC-secretome acts on 
several cytokines simultaneously and synergistically and if 
MSC-secretome can be formulated as a freeze-dried powder 
and administered as IV or by inhalation, it may represent a 
suitable approach for the treatment of COVID-19 pneumonia 
particularly in patients who are critically ill [59]. 

Since January 2020, several reports have been published 
on the success of MSC therapies in the treatment of COVID-19 
complications in conjunction with other therapeutic modalities 
[65-68]. There are two published studies from China on the 
use of MSCs in the treatment of COVID-19: one included 7 
patients and the second one was a single case report [65-67]. 
Recently, 2 commercial companies; Pluristem and Mesoblast; 
made press releases announcing their preliminary results on 
the use of MSCs in the treatment of patients having severe 
COVID-19 [54,69,70]. Countries such as China, the United 
States of America, Jordan, and Iran have begun using cellular 
therapies in clinical trials for the treatment of COVID-19 
infections with approximately 70 registered trials, 20 of them 
in China. The vast majority of trials use MSCs derived from 
UCB and some trials are using: NKCs, embryonic stem cells, 
and products of MSCs such as exosomes and few of these 
trials use the combination of MSCs and NKCs or ruxolitinib 
[53,57,71]. In China, at least 4 clinical trials on the use of 
MSCs in the treatment of COVID-19 pneumonia, mainly using 
UCB-MSCs were registered in February and March 2020 [53]. 
Currently, MSCs are being tested in several clinical trials 
including: NCT04269525, NCT04288102, and NCT04252118 
[57,67,71,72]. 

The following are required before adopting MSCs in the 
treatment of COVID-19 infections: updated minimal criteria 
for characterization of cellular therapies; updated guidelines 
on the use of cellular therapies in infectious diseases; updated 
cell therapy routines that reϐlect speciϐic needs of patients 
requiring this form of treatment; and the use of ACE2 negative 
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MSCs in the treatment of patients with COVID-19 having 
ALI and ARDS [73-75]. In the era of COVID-19 pandemic, 
several groups of scientists from all over the world have 
recommended the use of MSCs in the treatment of severe 
COVID-19 infections as MSCs and their secretomes have the 
following beneϐicial effects: suppression of viral replication; 
enhancement of the generation of regulatory T-cells that 
are suppressed by COVID-19; shifting the phenotype of 
antigen presenting cells including DCs, B-lymphocytes, and 
macrophages; modulation of the proliferation and activation 
of naïve and effector T-cells, NKCs, and mononuclear cells; 
prevention of the formation of NETs; inhibition of the cytokine 
storm induced by COVID-19; the antiviral, antibacterial, and 
analgesic effects of MSC-secretomes; reduction in pulmonary 
edema associated with ARDS in COVID-19; entrapment 
of IV infused MSCs in the lungs; enhancement of tissue 
regeneration and promotion of endogenous repair and 
healing in ALI; as well as safety and efϐicacy of MSCs and their 
products provided good manufacturing practice guidelines 
and quality control measures are taken into consideration 
[8,13,34,44,52,54,73,75-86].

So, the emergence of new viruses that cause serious human 
infections is faced with slow and complicated antiviral drug 
development. In the absence of speciϐic and curative antiviral 
therapy for COVID-19, plenty of medications are being 
repurposed with variable efϐicacy. MSCs and their secretomes 
are recommended by several groups of scientists as they 
can potentially control several complications of COVID-19 
infections such as pneumonia, ARDS, ALI, and the associated 
cytokine storm. 
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