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Introduction
Natural killer (NK) cells, the third population of lymphoid 

cells, comprise 5%-25% of peripheral blood (PB) lymphocytes 
and represent the ϐirst line of defense against infections and 
tumors [1-7]. They can be derived from: bone marrow, PB, 
cryopreserved umbilical cord blood (UCB), human embryonic 
stem cells (hESCs), induced pluripotent stem cells (iPSCs), 
and various cell lines such as NK-92 and KHYG-1 [1]. NK 
cells; which have been divided into cytotoxic, tolerant, and 
regulatory subsets; are classiϐied into: (1) naïve CD56 bright 
CD 16 dim CD 3 dim cells, (2) mature CD56 dim CD16 bright CD3 dim 
cells, and (3) lymphoid tissue-resident CD69+/CXCR6+ NK 
cells [1,2,8-11]. Although NK cells have been traditionally 
considered as part of the innate immune system, they 
have recently been shown to exhibit many of the features 
associated with adaptive immunity [8,12]. The functions of 
NK cells which are inϐluenced by several cytokines include: 
elimination of infected cells, destruction of cancer cells, 
reducing the incidence of graft versus host disease (GVHD) 
following hematopoietic stem cell transplantation (HSCT), 
and regulation of pregnancy outcome [10,11,13]. NK cell 
function is ϐinely tuned by activating and inhibitory receptors 
that recognize both foreign and self-antigens expressed by NK 
cell-susceptible targets [7,14]. Activated NK cells interact with 
dendritic cells (DCs) and mesenchymal stem cells (MSCs) and 
the complicated crosstalks between NK cells, MSCs, and DCs 
may alter the functions of any of the 3 cell types [15-27]. 

NK cells are attractive candidates for adoptive cellular 
therapy in patients with hematologic malignancies (HMs) and 
solid tumors, as well as in recipients of allogeneic HSCT by 
enhancing graft versus leukemia (GVL) effect without causing 
GVHD [1,28-34]. Approximately 10%-20% of NK cells remain 

unlicenced and functionally hyporesponsive due to lack of 
receptors for self-major histocompatibility complex (MHC). 
However, unlicenced NK cells become alloreactive after 
adoptive transfer into recipients of HSCT [7]. NK cells express 
inhibitory inhibitory killer cell immunoglobulin-like receptors 
(KIRs) to recognize self - HLA (human leukocyte antigen) class 
I molecules and provide inhibitory signals to preclude killing 
of the target cells [8]. 

Multiple myeloma (MM) is characterized by gradual 
immune dysregulation and myeloma cells exhibit speciϐic 
immunoevasive strategies to circumvent and attenuate NK 
cell function [32,35]. Transformed plasma cells in MM are 
susceptible to NK cell-mediated killing by engagement of tumor 
ligands for activating receptors or missing self recognition 
[32,33,35]. Despite the advancements in novel therapies and 
autologous HSCT, MM remains an incurable and difϐicult-
to-treat HM due to drug resistance predisposed to by the 
immunosuppressive microenvironment and clonal evolution 
thus making allogeneic HSCT the only potentially curative 
therapeutic modality due to its potent graft versus myeloma 
effect [31,35]. In patients with MM, NK cells have been used in 
several trials in the setting of autologous as well as allogeneic 
HSCT as NK cells elicit cytotoxic effects against MM cells and as 
KIR-ligand mismatch may improve the outcome of allogeneic 
HSCT [31,32,36-38]. NK cell killing of tumor cells in MM can 
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be augmented by: check point inhibitors (CPIs), therapeutic 
antibodies such as daratumumab, immunomodulatory agents 
such as lenalidomide, indoleamine 2,3 dioxygenase inhibitors, 
and adoptive transfer of unmanipulated or chimeric antigen 
receptor (CAR)-engineered NK cells [30,35]. 

Allogeneic HSCT has revolutionized the treatment of HMs, 
but the use of this potentially curative therapy is limited by: 
GVHD, infections and relapse of the primary disease [29,39-41]. 
NK cells are the ϐirst subset of donor-derived lymphocytes to 
reconstitute after HSCT thus they may protect against relapse 
in the early months following HSCT by providing GVL effect 
without causing GVHD [1,39,42]. Although the initial studies 
on the use of autologous NK cells were disappointing, the use 
of allogeneic NK cells has resulted in favorable outcomes in 
both transplant and non-transplant settings and this led to the 
advancement of NK immunotherapy over the last decade [1]. 

Donor NK cells play signiϐicant roles in: promotion of 
hematopoietic engraftment in recipients of HSCT, preventing 
relapse of HM post-allogeneic HSCT by mediating GVL effects, 
and regulation of GVHD by suppressing alloreactive T-cell 
responses [39]. Enhancement of GVL without increasing 
the incidence of GVHD can be achieved by: optimal donor 
selection, optimal conditioning therapy, administration of 
GVHD prophylaxis, and administration of T-cells and donor-
derived NK cells which are amenable to ex vivo manipulation 
and clinical manufacture [40]. Separating GVL effects 
from GVHD is of special interest in non-speciϐic cell-based 
immunotherapy which may eradicate molecular disease and 
prevent relapse following allogeneic HSCT particularly when 
leukemia burden is low [28,43]. The recognition of missing-
self on target cells is crucial for promoting NK cell-mediated 
GVL effects [8]. NK cells have a central role in tumor-cell 
surveillance but leukemic cells have great capacity to escape 
NK cell recognition and killing thus limiting the use of NK cells 
in immunotherapy [44]. Augmentation of T-cell alloreactivity 
may be inϐluenced by NK cells in recipients of T-cell deleted 
allografts, while immunosuppression with sirolimus and 
expansion of T-regulatory cells may decrease the incidence of 
acute GVHD by suppressing the development of T-cell mediated 
alloreactivity [29,45,46]. NK cell infusions derived from PB 
and UCB contain contaminating T-cells whose stimulation by 
cytokines that are produced by NK cells may trigger GVHD in 
vivo thus limiting the safety and efϐicacy of NK cell infusions in 
allogeneic HSCT. However, NK cells obtained from iPSCs, hESCs, 
and NK cell lines are free of contamination with T and B cells 
thus offering alternative sources of NK cells that can be used 
in adoptive immunotherapy [47]. Unfortunately, non-speciϐic 
immunotherapy is dependent on repeat administrations [28].

Invariant NK T (iNKT) cells that are derived from HSCs 
protect against GVHD and cancer, while cytokine-induced 
killer (CIK) cells have demonstrated cytotoxicity against a 
variety of malignant or leukemic cells with no or only minor 
effects on normal hematopoietic progenitor cells [28,41,48,49]. 

Allogeneic CIK cells retain the ability to produce GVL effect 
while generating minimal GVHD [41]. CIK cell infusion 
comprises a safe and a feasible novel immunotherapeutic 
approach that targets relapse or minimal residual diseasae 
following HSCT for HMs [41,50]. In a recently published study 
that included 91 patients with various HMs relapsing after 
allogeneic HSCT; conventional donor lymphocyte infusion 
(DLI) given to 55 patients was compared to CIK given to 36 
patients, the outcome of CIK therapy was superior to that of 
DLI with higher overall survival, less relapses, and less acute 
GVHD [28]. However, optimal timing and dosage of NK cells 
need to be determined [50].

The use of post-transplant cyclophosphamide (PTC) as 
GVHD prophylaxis has revolutionized haploidentical HSCT 
although PTC eliminates most mature donor NK cells infused 
in the graft including alloreactive NK cells [51]. NK cell 
recovery after haploidentical HSCT is greatly inϐluenced by 
other subsets of immune cells and by drugs used in the post-
transplant period [51]. NK cell immunotherapies have the 
potential to signiϐicantly enhace the ability of conventional 
therapies to eliminate acute myeloid leukemia (AML) after 
HSCT [43]. Initial reports of haploidentical HSCT in AML 
patients showed that alloreactive NK cells had favorable 
effects on relapse and survival by promoting engraftment, 
enhancing GVL effect and reducing the incidence of GVHD. 
However, subsequent studies have shown either no 
defference in the incidence of GVHD or adverse outcomes 
related to GVHD, infections and disease relapse. Therefore, 
selecting the most appropriate alloreactive NK cell model and 
selective expansion of a particular NK cell subset may become 
vital in restoring NK cell function in the post-HSCT period 
[52]. Fortunately, acquisition of large numbers of mature 
and functional NK cells that can be derived and differentiated 
from UCB-CD3+ HSCs is easily accessible, but optimal clinical 
protocols for NK cell therapies in leukemia and other cancers 
are still lacking [53]. Strategies that can be employed to 
improve NK cell immunotherapies include: optimal donor 
selection; combination with cytokine stimulation or  immune 
CPIs; drugs that enhance NK cell antitumor activity or 
sensitize malignant cells to NK cells; bispeciϐic or trispeciϐic 
killer engagers; adoptively infused allogeneic NK cells in 
haploidentical transplantation; advancing the ϐield of ex 
vivo manipulation and genetic engineering; priming of NK 
cells; and using extracellular vesicles derived from NK cells 
[1,8,44,45,54-56].

HMs such as: acute lymphoblastic leukemia, chronic 
lymphocytic leukemia, Hodgkin lymphoma, and non-Hodgkin 
lymphoma are associated with immune deϐiciencies including 
NK cell dysfunction. Consequently, therapeutic strategies 
aimed at restoring NK cell function in these HMs are evolving 
[57-61]. Although the majority of clinical trials involving 
NK cells have initially focused on AML and MM, trials on the 
use of NK cell immunotherapies to treat other HMs as well 
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as solid tumors are rapidly expanding. However, certain 
limitations have to be resolved, quality and safety measures 
should be taken into consideration, and preparatory as well 
as therapeutic protocols for speciϐic subsets of NK cells need 
to be implemented. 
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