Review Article
The rising role of mesenchymal stem cells in the treatment of COVID-19 infections
Al-Anazi KA* and Al-Jasser AM
Published: 07 July, 2020 | Volume 4 - Issue 1 | Pages: 011-016
Infectious diseases are a leading cause of death worldwide [1,2]. The Mid-20th century witnessed most of the antimicrobial discoveries but recently there is dramatic shortage of new classes of antimicrobial agents due to failure to build a sustainable antimicrobial discovery platform [1-4]. For example, antibiotics comprise ˂ 1.5% of the compounds under investigation at the major pharmaceutical and biotechnology companies [1,5].
Read Full Article HTML
DOI: 10.29328/journal.jsctt.1001021
Cite this Article
Read Full Article PDF
References
- Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004; 38: 1279‐1286. PubMed: https://pubmed.ncbi.nlm.nih.gov/15127341/
- Hoffman PS. Antibacterial discovery: 21st century challenges. Antibiotics (Basel). 2020; 9: E213. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32353943
- Piddock L, Garneau-Tsodikova S, Garner C. Ask the experts: how to curb antibiotic resistance and plug the antibiotics gap? Future Med Chem. 2016; 8: 1027‐1032. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27327784
- Stehr M, Elamin AA, Singh M. Filling the pipeline - new drugs for an old disease. Curr Top Med Chem. 2014; 14: 110‐129. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24236723
- Gottfried J. History repeating? Avoiding the return to the pre-antibiotic age. Harvard University’s DASH Repository. 2005; 1-72. http://dash/harvard.edu/bitstream/handle/1/8889467/Gottfried05.pdf?sequence=1
- Jackson N, Czaplewski L, Piddock LJV. Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother. 2018; 73: 1452‐1459. PubMed: https://pubmed.ncbi.nlm.nih.gov/29438542/
- Luepke KH, Mohr JF 3rd. The antibiotic pipeline: reviving research and development and speeding drugs to market. Expert Rev Anti Infect Ther. 2017; 15: 425‐433. PubMed: https://pubmed.ncbi.nlm.nih.gov/28306360/
- Metlay JP, Powers JH, Dudley MN, Christiansen K, Finch RG. Antimicrobial drug resistance, regulation, and research. Emerg Infect Dis. 2006; 12: 183‐190. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373116/
- Singer AC, Kirchhelle C, Roberts AP. Reinventing the antimicrobial pipeline in response to the global crisis of antimicrobial-resistant infections. F1000 Res. 2019; 8: 238. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30906539
- Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, et al. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob Resist Infect Control. 2012; 1: 11. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22958833
- Gupta SK, Nayak RP. Dry antibiotic pipeline: Regulatory bottlenecks and regulatory reforms. J Pharmacol Pharmacother. 2014; 5: 4‐7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24554902
- Powers JH. Antimicrobial drug development-the past, the present, and the future. Clin Microbiol Infect. 2004; 10 Suppl 4: 23‐31. PubMed: https://pubmed.ncbi.nlm.nih.gov/15522037/
- Monnet DL. Antibiotic development and the changing role of the pharmaceutical industry. Int J Risk Safety Med. (IOS Press). 2005; 17: 133-145. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746591/
- Ianevski A, Zusinaite E, Kuivanen S, Strand M , Lysvand H, et al. Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Res. 2018; 154: 174‐182. PubMed: https://pubmed.ncbi.nlm.nih.gov/29698664/
- Bryan-Marrugoa OL, Ramos-Jiménez J, Barrera-Saldañaa H, Rojas-Martíneza A, Vidaltamayo R, et al. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Medicina Universitaria. 2015; 17: 165-174. PubMed:
- Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, et al. Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res. 2019; 167: 45‐67. PubMed: https://pubmed.ncbi.nlm.nih.gov/30974127/
- De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016; 29: 695‐747. PubMed: https://pubmed.ncbi.nlm.nih.gov/27281742/
- Richman DD, Nathanson N. Antiviral therapy. In: Viral pathogenesis (third edition) from basics to systems biology. Academic Press. 2016; 271-287. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149377/
- Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019; 14: 397‐412. PubMed: https://pubmed.ncbi.nlm.nih.gov/30849247/
- Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76: 71-76. PubMed: https://pubmed.ncbi.nlm.nih.gov/32112977/
- Tu H, Tu S, Gao S, Shao A, Sheng J. The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J Infect. 2020. pii: S0163-4453(20)30222-X. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166041/
- Acter T, Uddin N, Das J, Akhter A, Choudhury TR, et al. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci Total Environ. 2020; 730: 138996. PubMed: https://pubmed.ncbi.nlm.nih.gov/32371230/
- Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020; 63: 119-124. PubMed: https://pubmed.ncbi.nlm.nih.gov/32252141/
- Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020: 105948. PubMed: https://pubmed.ncbi.nlm.nih.gov/32201353/
- Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020; 87: 281‐286. PubMed: https://pubmed.ncbi.nlm.nih.gov/32166607/
- Al-Anazi KA, Al-Anazi WK, Al-Jasser AM. Neutrophils, NETs, NETosis and their paradoxical roles in COVID-19. J Stem Cell Ther Transplant. 2020; 4: 003-010. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184981/
- Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109: 102433. PubMed: https://pubmed.ncbi.nlm.nih.gov/32113704/
- Negro F. Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis? Swiss Med Wkly. 2020; 150: w20249. PubMed: https://pubmed.ncbi.nlm.nih.gov/32298458/
- Li H, Liu L, Zhang D, Xu J, Dai H, et al.SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020; 395: 1517-1520. PubMed: https://pubmed.ncbi.nlm.nih.gov/32311318/
- Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38: 1-9. PubMed: https://pubmed.ncbi.nlm.nih.gov/32105090/
- Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, et al. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol. 2020; 47: 107228. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162778/
- Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17: 259‐260. PubMed: https://pubmed.ncbi.nlm.nih.gov/32139904/
- Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; cvaa106. PubMed:
- Mozzini C, Girelli D. The role of neutrophil extracellular traps in COVID-19: Only an hypothesis or a potential new field. Thrombosis Res. 2020; 26-27. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184981/
- Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Med Hypotheses. 2020; 140: 109762. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175888/
- Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020: 108427. Doi: 10.1016/j.clim.2020.108427. Epub ahead of print. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169933/
- Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020. pii: 138999. Doi: 10. 1172/jci.insight.138999. Epub ahead of print. PubMed: https://pubmed.ncbi.nlm.nih.gov/32329756/
- Kanda M, Nagai T, Takahashi T, Liu ML, Kondou N, et al. Leukemia inhibitory factor enhances endogenous cardiomyocyte regeneration after myocardial infarction. PLoS One. 2016; 11: e0156562. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27227407
- Slater H. FDA accepts IND for NK cell therapy CYNK-001 to treat patients with COVID-19. Immuno-Oncology News. April 3, 2020. PubMed:
- Rameshrad M, Ghafoori M, Mohammadpour AH, Nayeri MJD, Hosseinzadeh H. A comprehensive review on drug repositioning against coronavirus disease 2019 (COVID19). Naunyn Schmiedebergs Arch Pharmacol. 2020; 1‐16. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235439/
- Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci. 2020; 117883. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263255/
- Al-Anazi KA, Al-Jasser AM. Mesenchymal stem cells-their antimicrobial effects and their promising future role as novel therapies of infectious complications in high risk patients. In: Progress in stem cell transplantation. Edited by: Demirer T. Intech Open. 2015. PubMed:
- Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood. 2012; 119: 1801-1809. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22228625
- Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant. 2016; 25: 829-848. PubMed: https://pubmed.ncbi.nlm.nih.gov/26423725/
- Thanunchai M, Hongeng S, Thitithanyanont A. Mesenchymal stromal cells and viral infection. Stem Cells Int. 2015; 2015: 860950. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26294919
- Yang K, Wang J, Wu M, Li M, Wang Y, et al. Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway. Sci Rep. 2015; 5: 7820. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25592282
- Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: Mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med. 2014 Dec; 2: 1016-1026. PubMed: https://pubmed.ncbi.nlm.nih.gov/25465643/
- Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir Med. 2015; 3: 24-32. PubMed: https://pubmed.ncbi.nlm.nih.gov/25529339/
- Chan MC, Kuok DI, Leung CY, Hui KPY, Valkenburg SA, et al. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci USA. 2016; 113: 3621‐3626. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822574/
- Rossetti D, Di Angelo Antonio S, Lukanović D, Kunic T, Certelli C, et al. Human umbilical cord-derived mesenchymal stem cells: Current trends and future perspectives. Asian Pac J Reprod 2019; 8: 93-101. PubMed:
- Horie S, Masterson C, Brady J, Loftus P, Horan E, et al. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: Impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Res Ther. 2020; 11: 116. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071745/
- Loy H, Kuok DIT, Hui KPY, Choi MHL, Yuen W, et al.et al. Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A (H5N1) virus-associated acute lung injury. J Infect Dis. 2019; 219: 186-196. PubMed: https://pubmed.ncbi.nlm.nih.gov/30085072/
- Atluri S, Manchikanti L, Hirsch JA.. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The case for compassionate use. Pain Physician. 2020; 23: E71-E83. PubMed: https://pubmed.ncbi.nlm.nih.gov/32214286/
- Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, et al. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med. 2020; 18: 203. PubMed: https://pubmed.ncbi.nlm.nih.gov/32423449/
- Shin S, Kim Y, Jeong S, Hong S, Kim I, et al. The therapeutic effect of human adult stem cells derived from adipose tissue in endotoxemic rat model. Int J Med Sci. 2013; 10: 8-18. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534872/ v
- Al-Anazi KA, Al-Anazi WK, Al-Jasser AM. The Rising role of mesenchymal stem cells in the treatment of various infectious complications. In: Update on mesenchymal and induced pluripotent stem cells. Edited by Al-Anazi KA. Intech Open. 2019. PubMed:
- Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep. 2020; 1‐7. PubMed: https://pubmed.ncbi.nlm.nih.gov/32281052/
- Barminko J, Gray A, Maguire T, Schloss R, Yarmush ML. Mesenchymal stromal cell mechanisms of immunomodulation and homing. In: Chase L, Vemuri M (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine 2013. Humana Press, Totowa, NJ.
- Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, et al. Mesenchymal stromal cell secretome for severe COVID-19 infections: Premises for the therapeutic use. Cells. 2020; 9. pii: E924. PubMed: https://pubmed.ncbi.nlm.nih.gov/32283815/
- Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, et al. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells. 2019; 8. pii: E467. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31100966
- Vizoso FJ, Eiro N, Cid S, Schneider J,Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017; 18. pii: E1852. PubMed: https://pubmed.ncbi.nlm.nih.gov/28841158/
- Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res. 2018; 19: 218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30413158
- Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, et al. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy. 2016; 18: 13-24. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924535/
- Bari E, Ferrarotti I, Torre ML, Corsico AG, Perteghella S. Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through "pharmaceuticalization" for the best formulation. J Control Release. 2019; 309: 11-24. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31326462
- Leng Z, Zhu R, Hou W, Fing Y, Yang Y, et al. Transplantation of ACE2- Mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11: 216‐228. Published 2020 Mar 9. PubMed: https://pubmed.ncbi.nlm.nih.gov/32257537/
- Liang B, Chen J, Li T, Wu H, Yang W, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells. China Xiv: 202002.00084v1 PubMed:
- Khoury M, Rocco PRM, Phinney DG, Krampera M, Martin I, et al. Cell-based therapies for COVID-19: Proper clinical investigations are essential. Cytotherapy. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163352/
- Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov. 2020; 5: 100019. PubMed: https://pubmed.ncbi.nlm.nih.gov/32296777
- Pluristem. Pluristem reports preliminary data from its COVID-19 compassionate use program, treating seven patients with acute respiratory failure 2020. Clinical Study Results.
https://www.pluristem.com/wp-content/uploads/2020/04/PSTI-PR-Follow-up-on-Covid-19-treatments. Final-For-Release.pdf
- Sami T. Mesoblast reports 83% survival in ventilator-dependent COVID-19 patients following stem cell therapy: BioWorld; 2020. Preliminary Clinical Trial Results. https://www.bioworld.com/articles/434640-mesoblast-reports-83-survival-in-ventilator-dependent-covid-19-patients-following-stem-cell-therapy
- Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020; 21: 2657. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177898/
- Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 2020; 41: 363‐382. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144665/
- Moll G, Hoogduijn MJ, Ankrum JA. Editorial: Safety, efficacy and mechanisms of action of mesenchymal stem cell therapies. Front Immunol. 2020; 11: 243. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040069/
- Zhao RC. Stem cell-based therapy for coronavirus disease 2019. Stem Cells Dev. 2020; 29: 679‐681. PubMed: https://pubmed.ncbi.nlm.nih.gov/32292113/
- Liu S, Peng D, Qiu H, Yang K, Fu Z, et al. Mesenchymal stem cells as a potential therapy for COVID-19. Stem Cell Res Ther. 2020; 11, 169. PubMed: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-01678-8
- Basil MC, Katzen J, Engler AE, Guo M, Herrigeset MJ, et al. The cellular and physiological basis for lung repair and regeneration: Past, present, and future. Cell Stem Cell. 2020; 26: 482‐502. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32243808
- Börger V, Weiss DJ, Anderson JD, Borràs FE, Bussolati B, et al. ISEV and ISCT statement on EVs from MSCs and other cells: considerations for potential therapeutic agents to suppress COVID-19. Cytotherapy. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229942/
- Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with Mesenchymal Stem Cell therapy. Biotechnol Rep (Amst). 2020; e00467. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224671/
- Ankrum J, Carver RJ. Can cell therapies halt cytokine storm in severe COVID-19 patients? Sci Transl Med. 2020; 12: eabb5673. PubMed:
- Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19) - induced pneumonia. Aging Dis. 2020; 11: 462‐464. PubMed: https://pubmed.ncbi.nlm.nih.gov/32257554/
- Zumla A, Wang FS, Ippolito G, Petrosillo N, Agratiet C, et al. Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of mesenchymal stromal (stem) cell (MSC) therapy - achieving global consensus and visibility for cellular host-directed therapies. Int J Infect Dis. 2020; 96: 431-439. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231497/
- Gentile P, Sterodimas A. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia. Expert Opin Biol Ther. 2020; 1‐6. PubMed: https://pubmed.ncbi.nlm.nih.gov/32329380/
- Taghavi-Farahabadi M, Mahmoudi M, Soudi S, Hashemi SM. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses. 2020; 144: 109865. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242964/
- Rao Us V, Thakur S, Rao J, Arakeri G, Brennanet BA, et al. Mesenchymal stem cells-bridge catalyst between innate and adaptive immunity in Covid 19. Med Hypotheses. 2020; 109845. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232064/
- O'Driscoll L. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discov Today. 2020; S1359-6446(20)30170-7. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202814/
- Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020; 29: 747-754. PubMed: https://pubmed.ncbi.nlm.nih.gov/32380908/